

Creating a Cancer-free World. One Person, One Discovery at a Time.

The James

Spine Oncology: Decision Making and Future Advances

Vikram B Chakravarthy, MD Jan 9, 2023

Disclosures

None

Objectives

Review NOMS and understand how it can be utilized in the

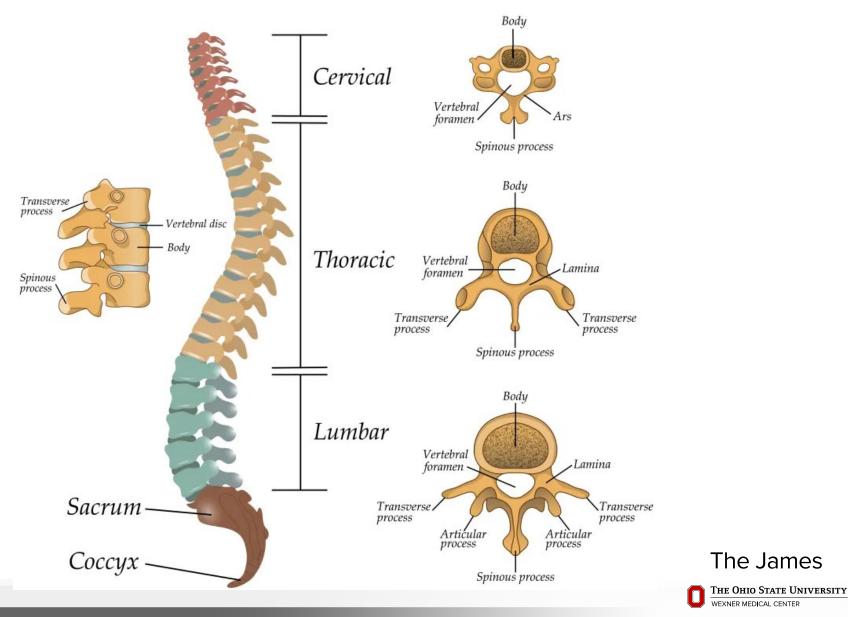
decision making of Metastatic Spine Disease

- What is Separation Surgery and how we can improve on existing techniques
- Spine and Peripheral Nerve Oncology Compendium
- Components of an Effective Spine Oncology Program

The James

Patient Evaluation

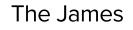
The James


The Ohio State University

WEXNER MEDICAL CENTER

Creating a Cancer-free World. One Person, One Discovery at a Time.

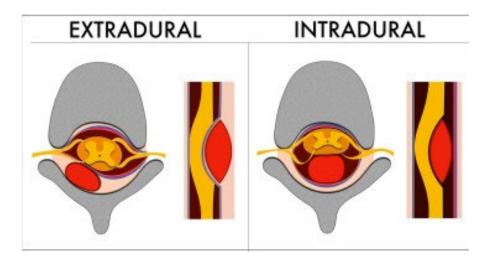
The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute


Spine Anatomy

Primary Spinal Column Tumors

- Bone Malignancies
 - Osteoid Osteoma
 - Osteoblastoma
 - Aneurysmal Bone Cyst
 - Giant Cell
 - Chordoma
 - Sarcoma
 - Osteogenic Sarcoma
 - Chondrosarcoma
 - Soft Tissue Sarcomas

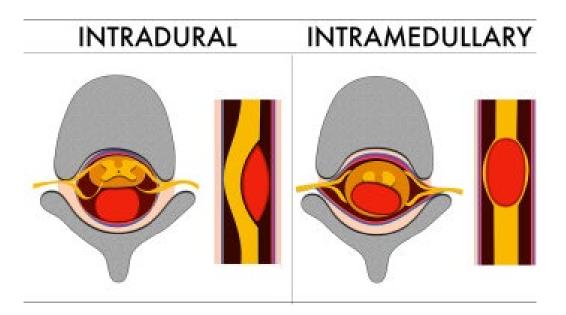
- Hematologic Malignancies
 - Plasmacytoma
 - Multiple Myeloma
 - Lymphoma
- Ewing's Sarcoma (PNET)



Classification: Epidural vs. Intradural

- Epidural
 - Metastatic
 - Breast, Prostate
 - Lung, Colon, Renal Cell, Melanoma, Thyroid
 - Primary: <u>Benign</u>
 - Osteoid Osteoma, Osteoblastoma
 - ABC/Giant Cell Tumor
 - Nerve Sheath Tumors: Schwannoma, Neurofibroma, Ganglioneuroma

- Primary: <u>Malignant</u>
 - Chordoma
 - Chondrosarcoma



Classification: Intradural

- Intradural (Uncommon, 15%)
 - Intramedullary
 - Astrocytoma
 - Ependymoma
 - Hemangioblastoma
 - Cavernoma
 - Metastasis
 - Lipoma/Epidermoid
 - Extramedullary
 - Meningioma
 - Schwannoma
 - Myxopapillary Ependymoma

Intradural Extramedullary Tumors

- Schwannoma
- Myxopapillary Ependymoma
- Meningioma
- Paraganglioma

Gross Total Resection: Cure Exception: Drop Metastases

Leptomeningeal Tumor **RT/IT Chemotherapy**

Presentation

- Three predominant Pain Syndromes
 - Biologic
 - **Mechanical**
 - Myelopathy/Radiculopathy

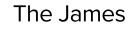
The James

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Significant Treatment Implications

Presentation: Biologic Pain

- Tumor related pain
- Predominant pain syndrome: 95%
- Night or morning pain that resolves over the course of the day
- Inflammatory mediators
- <u>Mechanism</u>: diurnal variation in endogenous steroid secretion
- Treatment: Steroids, RT



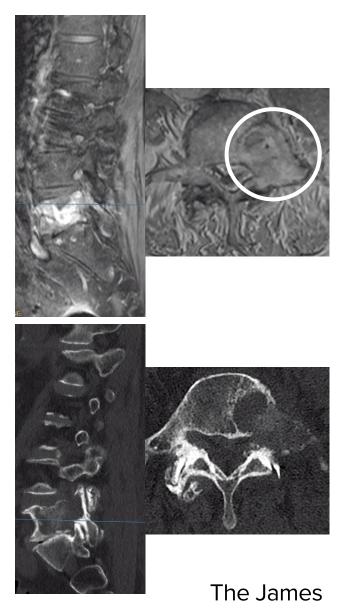
The James

Presentation: Mechanical Pain

- Indicative of bone pathology
- Movement-related pain
- Level dependent
 - <u>CCJ:</u> Flexion, Extension, Rotation
 - Occipital Neuralgia
 - Cervical: Flexion, Extension
 - Thoracic: Extension
 - Recumbency pain
 - Comfortable in kyphosis
 - Lumbar: Mechanical Radiculopathy
 - Axial load pain causing nerve root compression

Presentation: Myelopathy

- Indicative of high-grade spinal cord compression
 - Spinothalamic Tract: Loss of Pinprick
 - Corticospinal Tract: Loss of Motor
 - Posterior Column: Loss of Proprioception
 - Autonomic: Bowel or Bladder Dysfunction



Presentation: Radiculopathy

- Indicative of neuroforaminal disease
- Differentiate from the following:
 - **Bone** lesion
 - Neuropathy
 - Brachial/lumbosacral plexus tumor
 - Leptomeningeal disease
- <u>Treatment:</u> Dependent on tumor histology and degree of epidural disease

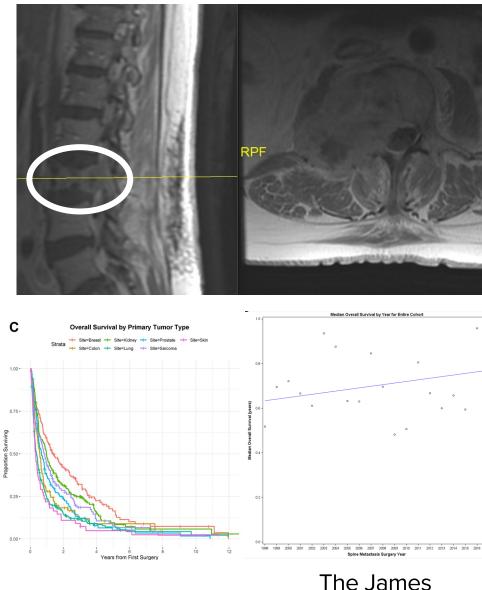
Diagnostic Radiology

- Plain X-rays: Scoliosis
- MRI
 - Screen full neural axis (CTL Spine with contrast)
 - Axial images: evaluate for epidural compression
- CT Myelogram
- CT
 - Evaluate for osseous pathology
- PET Scan/Bone Scan: determine metabolic activity

Metastatic Disease

The James

THE OHIO STATE UNIVERSITY


WEXNER MEDICAL CENTER

Creating a Cancer-free World. One Person, One Discovery at a Time.

The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Metastatic Spine Tumors

- 20% of cancer patients develop spine metastases
- Increased incidence of metastatic spine tumors:
 - MR/18FDG-PET imaging have improved detection.
 - Systemic treatments have improved patient survival
 - Different patterns of metastases: Prostate
 - Biologics/Checkpoint inhibitors
 - Visceral > Bone Responses
- Increased Survival

THE OHIO STATE UNIVERSITY

WEXNER MEDICAL CENTER

Cobb et al. JNS 1975 Walsh et al. Ann Thorac Surg 1997 Chohan et al. Neurosurgery 2017 Rothrock et al. Neurosurgery 2021

Multi-Disciplinary Approach

Systemic Therapy

- Chemo/Immuno
 Therapy
- Checkpoint Inhibitors
- Targeted therapy

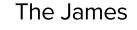
Surgery

- Kyphoplasty
- Separation Surgery
- Percutaneous Fusion with PMMA
- En bloc vs Intralesional Resection

Radiation Therapy

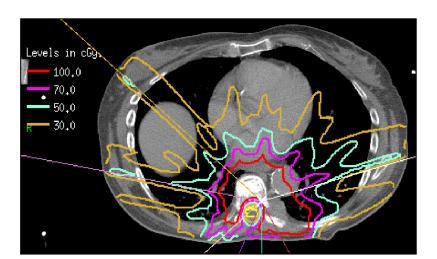
- cEBRT (30Gy x 10 fractions)
- IMRT
 - 24Gy Single Fraction
 - 10 Gy x3 Hypofractionated RT
- Brachytherapy

The James



Multi-Disciplinary Approach

3 Months postop: Separation Surgery + SRS

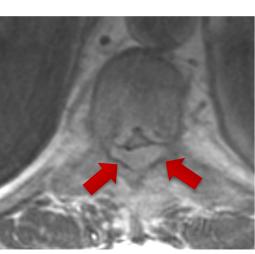

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

NOMS Decision Framework

- Neurologic
- Oncologic
- Mechanical Stability
- Systemic disease

- Systemic Therapy
- Radiation Therapy
- Surgery

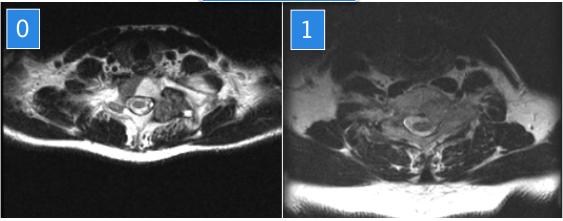
VS.

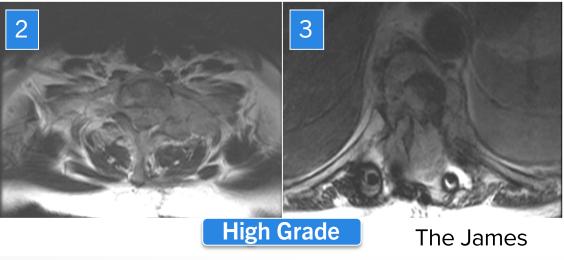



Bilsky et al. North American Clinics Heme/Onc. 2006 Laufer et.al. Oncologist 2013 Laufer et al. JNS Spine 2019

NOMS Decision Framework

- Neurologic
 - Myelopathy/Radiculopathy
 - Degree of ESCC
- Oncologic
 - Radiation Sensitivity
 - cEBRT/SRS
 - Role for Brachytherapy
- Mechanical Instability
 - SINS criteria
 - Kyphoplasty/vertebroplasty
 - Percutaneous Instrumentation
 - Open surgery
- Systemic Disease/Co-morbidities
 - Biologics/Checkpoint inhibitors
 - Survival Nomograms
 - Ablative Radiation





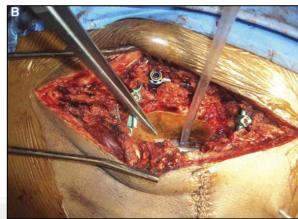
N: Degree of ESCC

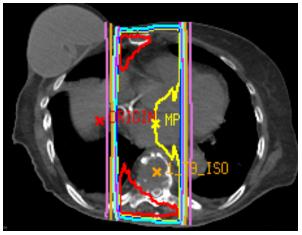
- Neurologic
 - **Myelopathy**
 - **Radiculopathy**
 - Degree of Epidural Spinal Cord Compression
 - O: Bone-only disease
 - 1: Epidural extension without cord compression
 - A, B, C
 - 2: SCC with CSF visible around cord
 - 3: SCC, no CSF visible around cord

Low Grade

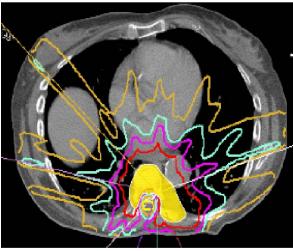
Timing of Treatment: ESCC with Myelopathy

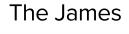
- High-dose steroids
- Subtle myelopathy
 - Decline precipitously
 - Pathophysiology
 - Tumor progression
 - Vascular (rare)
- Goal: Surgery ASAP
 - Systemic/Medicalwork-up
 - DVT/PE
 - Embolization(RCC)
 - R/O high risk of mortality





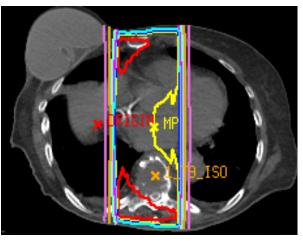
NOMS Decision Framework

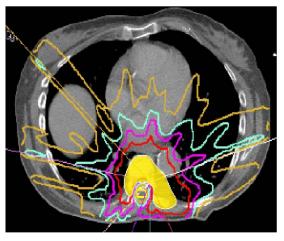

- Neurologic
 - Myelopathy/Radiculopathy
 - Degree of ESCC
- Oncologic
 - Radiation Sensitivity
 - cEBRT
 - SRS
 - Role for Brachytherapy
 - Recurrence/treatment failure



cEBRT

SRS




NOMS: Oncologic (RT)

cEBRT

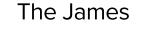
- 4 Field Technique: AP, PA, L Lateral, R Lateral
- Irradiation of large volumes of tissue: skin, soft tissue, bowel
 - Full dose to spinal cord
- More fractions: larger treatment field

- High precision
- 3D imaging
- Single Fraction (16-24 Gy) vs Hypofractionation
- Preservation of healthy tissue
- Cytotoxic tumoral dose

The James

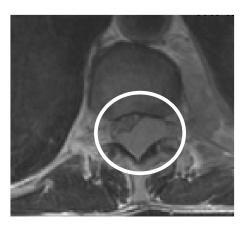
O: Radiation Sensitivity

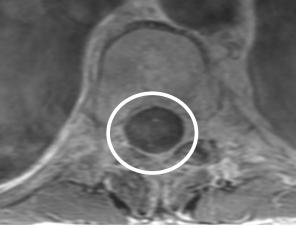
	Radiosensitive		[Radioresistant				
	Lymphoma Seminoma Myeloma	Breast	Prostate	Sarcoma	Melanoma	GI	NSCLC	Renal
Gilbert	F	F	U	U	U	U	U	U
Maranzano	F	F	F	U	U	U	U	U
Rades	F	I	I	Т	U	Ι	U	1
Rades	F	F	F	U	U	U	U	U
Katagiri	F	F	F	U	U	U	U	U
Maranzano	F	F	F	U	U	U	U	U
Rades	F	I	I	I.	U	I	U	- I

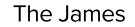

Responses: F-Favorable, I-Intermediate, U-Unfavorable

O: Radiation Sensitivity

	Radiosensitive			Radioresistant					
	Lymphoma Seminoma Myeloma	Breast	Prostate	Sarcom	a	Melanoma	GI	NSCLC	Renal
Gilbert	F	F	11	U			Ш	- 11	U
Maranzano		edian		U	M	ledian R			U
Rades		spons		1		Dura			Т
Rades		iratio		U		3 mo	nths	j	U
Katagiri		month	IS .	U				U	U
Maranzano			F	U		2y L		U	U
Rades	F	86%	I	I.		<mark>30</mark>	/0	U	1


Responses: F-Favorable, I-Intermediate, U-Unfavorable




Multiple Myeloma

NOMS Decision Framework

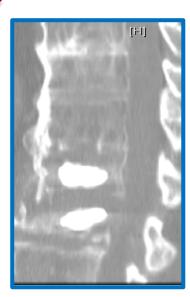
- Mechanical Instability
 - SINS criteria
 - Kyphoplasty/vertebroplasty
 - Percutaneous instrumentation
 - Separation Surgery (Open/MIS)

SINS 0-6: stable 7-12: potentially unstable >13: unstable

Component	Description	Score
Location	Junctional Mobile (C3-6, L2-4) Semirigid (T3-10) Rigid (S2-5)	3 2 1 0
Pain	Yes* Non-mechanical pain No	3 1 0
Bone Lesion	Lytic Mixed Blastic	2 1 0
Alignment	Subluxation De novo deformity Normal	4 2 0
Vertebral Body	>50% collapse <50% collapse >50% VB involved None of above	3 2 1 0
Posterior elements	Bilateral Unilateral None	3 1 0

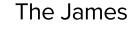
SINS Case Examples

The James


SINS Example: Lumbar

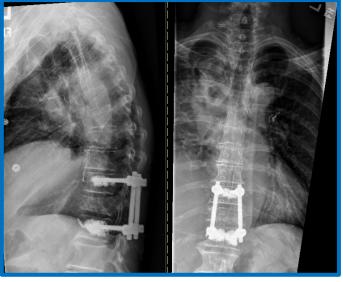
Component	Description	Score
Location	Junctional Mobile (C3-6, L2-4) Semirigid (T3-10) Rigid (S2-5)	3 2 1 0
Pain	Yes* Non-mechanical pain No	3 1 0
Bone Lesion	Lytic Mixed Blastic	2 1 0
Alignment	Subluxation De novo deformity Normal	4 2 0
Vertebral Body	>50% collapse <50% collapse >50% VB involved None of above	3 2 1 0
Posterior elements	Bilateral Unilateral None	3 1 0

SINS: 10 Potentially Unstable



<u>CAncer Patient Fracture Evaluation (CAFE) Study</u>

- 134 Patients randomized to kyphoplasty vs. non-surgical management
 - Crossover
 - 73% (38/52) NSM patients that completed the 1-month evaluation eventually crossed over to Kyphoplasty
 - -~55% (21/38) of the patients crossed over within 1 week after their 1-month visit
- Outcomes
 - Improvements seen at 1-month post-Kyphoplasty were generally maintained through the final 12-month assessment for:
 - Back pain 7.3 to 3.5
 - Back-specific function
 - Quality of life



SINS Example: Lumbar

Component	Description	Score
Location	Junctional Mobile (C3-6, L2-4) Semirigid (T3-10) Rigid (S2-5)	3 2 1 0
Pain	Yes* Non-mechanical pain No	3 1 0
Bone Lesion	Lytic Mixed Blastic	2 1 0
Alignment	Subluxation De novo deformity Normal	4 2 0
Vertebral Body	>50% collapse <50% collapse >50% VB involved None of above	3 2 1 0
Posterior elements	Bilateral Unilateral None	3 1 0

SINS: 15 Unstable



THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

SINS Example: Mechanical Radiculopathy

Component	Description	Score
Location	Junctional Mobile (C3-6, L2-4) Semirigid (T3-10) Rigid (S2-5)	3 2 1 0
Pain	Yes* Non-mechanical pain No	3 1 0
Bone Lesion	Lytic Mixed Blastic	2 1 0
Alignment	Subluxation De novo deformity Normal	4 2 0
Vertebral Body	>50% collapse <50% collapse >50% VB involved None of above	3 2 1 0
Posterior elements	Bilateral Unilateral None	3 1 0

Potentially Unstable

SINS: 10

THE OHIO STATE UNIVERSITY

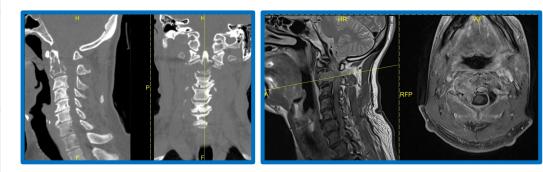
Mechanical Radiculopathy

Component	Description	Score
Location	Junctional Mobile (C3-6, L2-4) Semirigid (T3-10) Rigid (S2-5)	3 2 1 0
Pain	Yes* Non-mechanical pain No	3 1 0
Bone Lesion	Lytic Mixed Blastic	2 1 0
Alignment	Subluxation De novo deformity Normal	4 2 0
Vertebral Body	>50% collapse <50% collapse >50% VB involved None of above	3 2 1 0
Posterior elements	Bilateral Unilateral None	3 1 0

SINS: 10

٠

- 55 patients operated for mechanical radiculopathy
 - VAS: Preop 8 -> Postop 2
 - Pain: 98% improved
 - <u>ECOG:</u> 41.5% improved

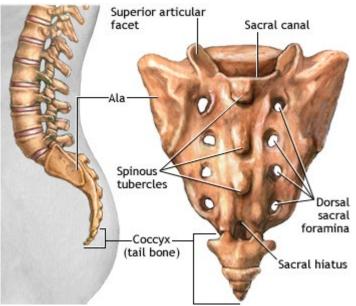

The James

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

SINS Example: OC

Component	Description	Score
Location	Junctional Mobile (C3-6, L2-4) Semirigid (T3-10) Rigid (S2-5)	3 2 1 0
Pain	Yes* Non-mechanical pain No	3 1 0
Bone Lesion	Lytic Mixed Blastic	2 1 0
Alignment	Subluxation De novo deformity Normal	4 2 0
Vertebral Body	>50% collapse <50% collapse >50% VB involved None of above	3 2 1 0
Posterior elements	Bilateral Unilateral None	3 1 0

SINS: 16 Unstable

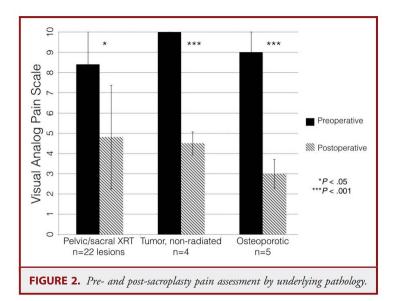


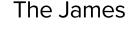
THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Sacral Metastasis

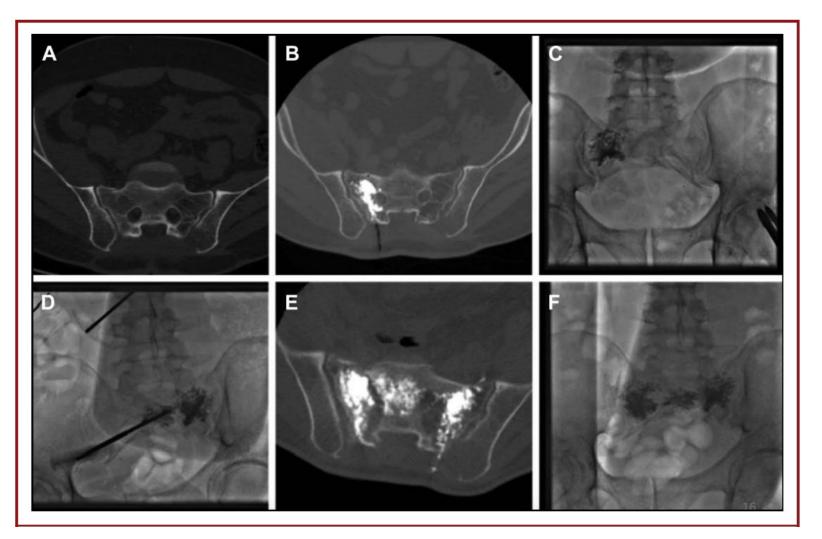
- Incidence: 1-7%, Rare
- Signify advanced disease
- Sacrum: projects posteriorly and forms the lumbosacral angle
 - Articulation at this angle is subject to shearing forces
- Presentation:
 - Pain
 - Pathologic Fracture
 - Nerve root compression
 - Decreased ambulation
 - Bowel or bladder incontinence

The James


WEXNER MEDICAL CENTER


THE OHIO STATE UNIVERSITY

Sacral Metastases: Sacroplasty


- Often treated with RT given high dose tolerance of cauda equina
- Without instability: Sacroplasty
 - 25 Symptomatic Tumor Associated Sacra Insufficiency Fractures
 - 31 Percutaneous Sacroplasties
 - 80% reduction in VAS @ 6.5 months (8.8 to 4.7)
 - 6/13 with ambulatory impairment required fewer ambulatory aids
 - 18 cases of extravertebral cement with no clinical relevance

Sacroplasty

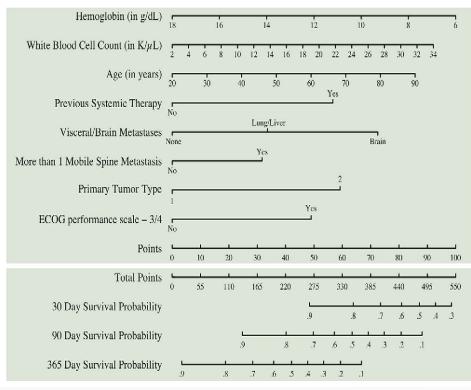

Moussazadeh et al. Neurosurgery 2015

Sacral Metastases: Surgical Options

- Sacral Decompression
- Percutaneous fixation of Sacral insufficiency fracture
- Charest-Morin et al: Surgery + RT (8) vs RT alone (15)
 - Improvements in HRQOL and pain following both treatments

Treatment	Bowel and bladder function	Baseline (%)	6 weeks (%)	3 months (%)	6 months (%)
Surgery	n	8	7	4	2
(+/- radiotherapy)	Normal function	6 (75.0)	7 (100.0)	3 (75.0)	2 (100.0)
	Partial loss	2 (25.0)	0 (0)	1 (25.0)	0 (0)
	Complete	0 (0)	<mark>0 (</mark> 0)	0 (0)	0 (0)
Radiotherapy	n	15	14	12	9
	Normal function	14 (93.3)	14 (100.0)	11 (91.7)	9 (100.0)
	Partial loss	1 (6.7)	0 (0)	1 (8.3)	0 (0)
	Complete	0 (0)	0 (0)	0 (0)	0 (0)
All patients	n	23	21	16	11
	Normal function	20 (87.0)	21 (100.0)	14 (87.5)	11 (100.0)
	Partial loss	3 (13.0)	<mark>0 (</mark> 0)	2 (12.5)	0 (0)
	Complete	0 (0)	0 (0)	0 (0)	0 (0)

Table 5 Bowel and bladder function per sacral treatment



NOMS Decision Framework

- Systemic Disease/Co-morbidities
 - Extent of systemic metastatic tumor burden
 - Medical comorbidities

SORG Nomogram

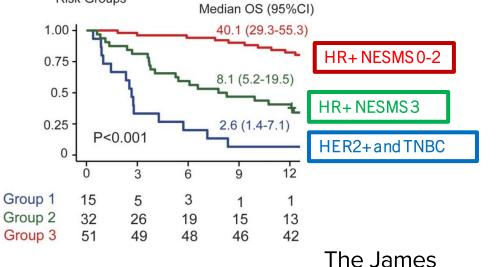
NESMS Score

Parameter	NESMS Points	
Modified Bauer Score	Modified	N/A
components	Bauer points	
Primary tumor is NOT lung	1	N/A
Primary tumor is breast or	1	N/A
kidney		
Solitary skeletal metastasis	1	N/A
No visceral metastasis	N/A	
Modified Bauer score		
≤2		0
≥3	2	
Serum albumin		
<3.5 g/dL		0
≥3.5 g/dL	1	
Ambulatory status*		
Non-ambulatory	0	
Intact or impaired	1	

The James

Pereira et al. JCO 2017 Schoenfeld et al. The Spine Journal 2015

One Step Further...

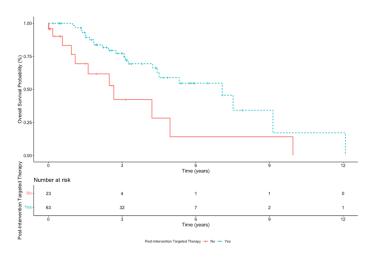

Tumor metastases **Biological** pain Mechanical pain Epidural cord compression Spinal instability Neurological deficit Symptomatic metastases Chemotherapy Hormone 98 had open spine surgery +/adjuvant therapy Radiation Immunotherapy

NESMS Score

Parameter	NESMS Points				
Modified Bauer Score	N/A				
components	Bauer points				
Primary tumor is NOT lung	1	N/A			
Primary tumor is breast or	1	N/A			
kidney					
Solitary skeletal metastasis	1	N/A			
No visceral metastasis	N/A				
Modified Bauer score					
≤2	0				
≥3	2				
Serum albumin					
<3.5 g/dL		0			
≥3.5 g/dL	1				
Ambulatory status*					
Non-ambulatory	0				
Intact or impaired	1				

Kaplan-Meier Curves for Overall Survival for 3 Risk Groups

THE OHIO STATE UNIVERSITY

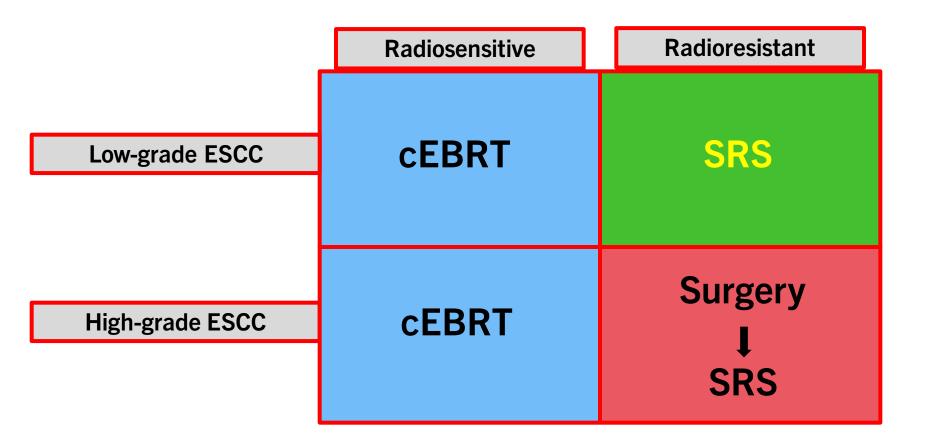

WEXNER MEDICAL CENTER

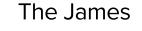
One Step Further...

- 131 Patients: Metastatic Breast Cancer with Spine Metastases
- Underwent Separation Surgery followed by RT (2010-2020)
- PI3K: most common gene mutation in patients undergoing surgery
 - Potential indicator of spine metastases

Prevalence of Somatic Gene Alterations							
Mutation	Prevalence	Prevalence of somatic gene alterations in metastatic breast cancer population					
PI3K	73 (55.7%)	31 - 45 %					
TP53	35 (26.7%)	29-37%					
ESR1	27 (20.6%)	10-17%					
FGFR	18(13.7%)	10%					
PTEN	10(7.6%)	3 - 6%					
CDH1	7 (5%)	7 - 9%					
GATA	8(6%)	11 - 15%					

motio Cono Alt

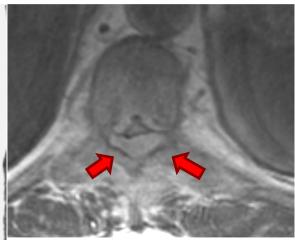

The James


WEXNER MEDICAL CENTER

THE OHIO STATE UNIVERSITY

Rabah et al. Neurosurgery 2022 Litton et al NEJM 2018 Lawrence et al. Nature 2014

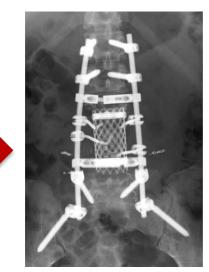
NOMS Simplified



Case Example

- Neurologic
 - Myelopathy: ASIA C
 - Functional Radiculopathy
 - ESCC: 3
- Oncologic
 - Tumor Histology: Lymphoma
 - Radiation or Chemosensitivity: RT-sensitive cEBRT
- Mechanical Stability: Stable
- Systemic Disease and Medical Co-morbidity: NC

SRS Outcomes and Complications


The James

Solitary RCC Metastasis: En bloc vs. SRS

Tomita Score: 4 En bloc resection

Operative Time 15.5 hours Mean EBL 5120 mL

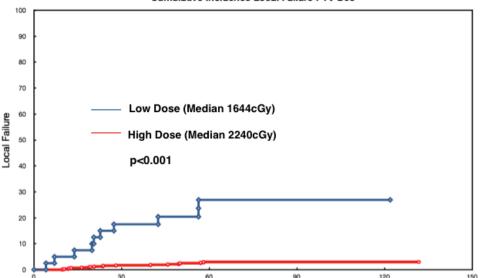
SRS

Treatment time: 20 minutes No blood loss; 98% control

The James

T10 Solitary RCC Metastasis

SRS Outcomes: Dose Matters


-811 tumors -82% Radioresistant -RCC, Sarcoma, Thyroid -ESCC 0-1c -Median f/u: 26.9 months

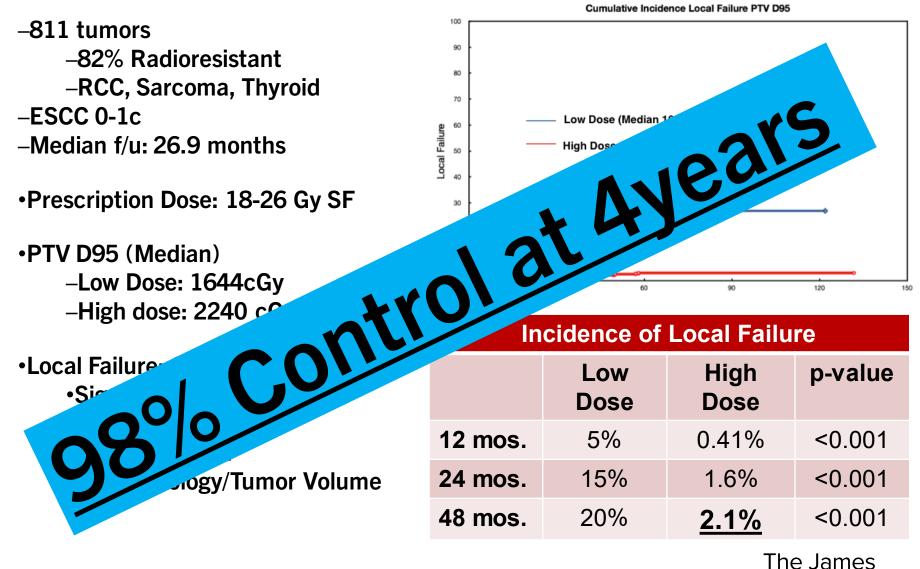
•Prescription Dose: 18-26 Gy SF

- •PTV D95 (Median) –Low Dose: 1644cGy –High dose: 2240 cGy
- Local Failure: 28 tumors (3.4%)
 Significant

 Low Dose SRS
 Not significant

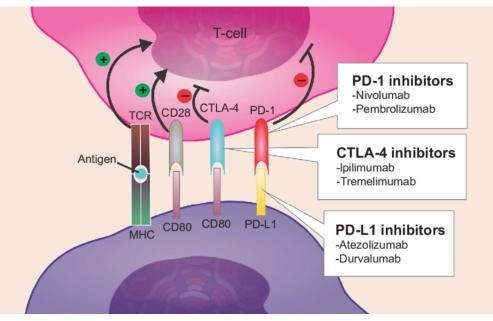
–Histology/Tumor Volume

Incidence of Local Failure


	Low Dose	High Dose	p-value
12 mos.	5%	0.41%	<0.001
24 mos.	15%	1.6%	<0.001
48 mos.	20%	<u>2.1%</u>	<0.001

Cumulative Incidence Local Failure PTV D95

SRS Outcomes: Dose Matters


THE OHIO STATE UNIVERSITY

WEXNER MEDICAL CENTER

Yamada et al. JNS Focus 2017

Checkpoint Blockade Immunotherapy

- Adding Checkpoint Blockade Immunotherapy to RT
 - Anti-Tumor T-cells can be reprogrammed/activated by the appropriate stimulus
 - Radiosensitizing Immunotherapy: Impact on locoregional control
 - Abscopal Effect: Impact on Systemic or distant control

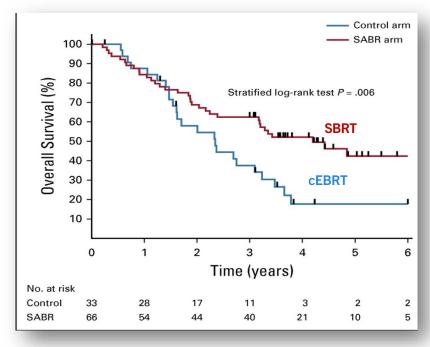
The James

Abscopal Effect

- 1953: Ab (Away) and Scopos (Target for shooting at)
- Ability of localized radiation to initiate an antitumor response that kills cancer cells distant to the primary target
- Radiation induced activation of immune system
 - Induced release of cytokines and chemokines --> inflammatory tumor microenvironment
- Use of immune checkpoint inhibitors:
 Ipilimumab, Pembrolizumab

ee et al. Blood 2009

Postow et al. NEJM 2012


The James The Ohio State University WEXNER MEDICAL CENTER

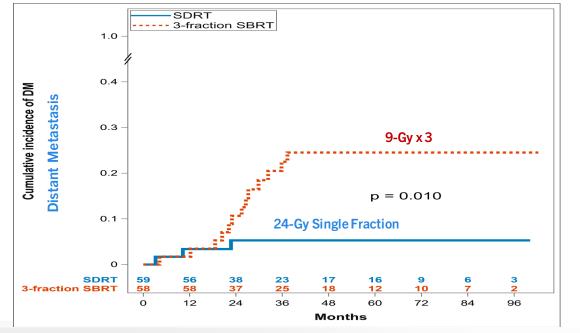
Treatment of Oligometastatic Disease

SABR-COMET Trial

- Standard of Care vs SABR to 1-5 oligometastases
- 99 Patients, median follow-up 51 months
- Improved Median overall survival (50 vs 28 months)
- Improved 5-year OS (42.3% vs 17.7%)
- Improved median PFS and 5-year PFS
- 22-month median OS benefit in patients with a controlled primary tumor and 1-5 oligometastases

Treatment of 1-5 oligometastatic disease matters

The James


WEXNER MEDICAL CENTER

THE OHIO STATE UNIVERSITY

Treatment of Oligometastatic Disease

- PISA Trial
 - 117 patients
 - 24 Gy vs 3x9Gy
 - 24 Gy Single Fraction: improved local control of irradiated oligometastases
 - Reduced distant metastases

Palma et al. JCO 2020 Zelefsky et al. IJROBP 2021

The James

WEXNER MEDICAL CENTER

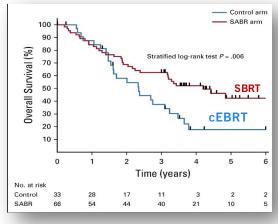
THE OHIO STATE UNIVERSITY

Treatment of Oligometastatic Disease

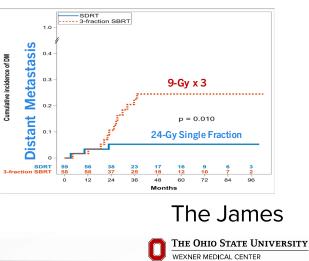
SABR-COMET Trial

- Standard of Care vs SABR to
- oligometastatic disease matters Treatment of 1-5 🗔 val (50 vs 28

mths

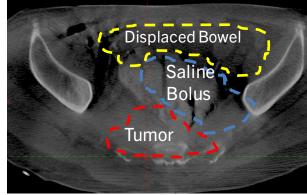

- 2-month median OS benefit in patients with a controlled primary tumor and 1-5 oligometastases
- **PISA** Trial

 117 patients
 24 Matters
 Dose Maters Ingle Fraction: superior local Introl of irradiated oligometastases


Reduced metastatic progression

Oligometastatic Disease

SABR-COMET trial



PISA trial

Organs at Risk: Dose Constraints

OAR Toxicity							
OAR	Dose Constraint	Toxicity Grade	% Risk				
Skin	Dmax 26 Gy	1-2	5%				
Vertebral Body	16-24 Gy 24 Gy	VB Fx Symptomatic	4-40% 7.2%				
Esophagus	15 Gy to 2.0 cc 14 Gy to 2.5 cc	<u>></u> 3	6.8% 0.1%				
Kidney	V10 Gy/33% vol.	N/A	0%				
Nerve Root/Plexus	24 Gy	<u>></u> 3	4%				
Spinal Cord	Dmax 14 Gy	Myelitis	0.42%				

Rose et al. J Clin Oncol 2009 Jawad et al. JNS Spine 2016 Virk et al. JNS Focus 2017 Cox et al. IJROBP 2012 Stubblefield et al. JNS Focus 2017 Sahgal et al. IJROBP 2013 Yamada et al. JNS Focus 2017

The James

SRS Complications

Vertebral Compression Fracture

- 7.8% (compared to 3% for cEBRT)
- Risk Factors
 - Pre-existing VCF
 - Lytic tumor type
 - Spinal deformity
- Risk of VCF decreases as dose per fraction decreased

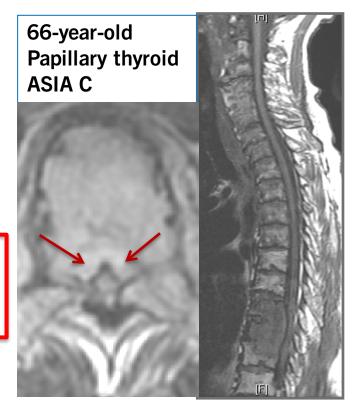
Radiation Myelopathy

- 0.4% incidence
- Late complication, patients may not live long enough to manifest
- Acute Pain Flare
- Esophageal Toxicity

Separation Surgery

The James

Surgical Goals


- Palliative
 - Preserve Neurologic function
 - Local tumor control
 - Mechanical stability
 - Pain relief
 - Improve quality of life

Separation Surgery + SRS

- Neurologic
 - Spinal cord decompression
- Oncologic: Radiation Response
 - cEBRT: Maximal cytoreduction
 - GTR/en bloc
 - SRS: Reconstitute the thecal sac, target for radiation
 - Separation Surgery
- Mechanical Stability
 - Pedicle screw fixation and rods

Surgery for High-Grade ESCC

- Patchell Study
- Prospective randomized trial
- Solid tumors
- HG-ESCC with myelopathy
- Surgery + cEBRT vs. cEBRT alone
- Exclusion criteria
 - RT-sensitive tumors
 - Hematologic Malignancies and GCT
 - Multi-level disease
 - Systemic contraindications to surgery

Surgery for High-Grade ESCC

	Surgery	Radiation	Significance
Overall Ambulation	84% (42/50)	57% (29/51)	p=.001
Duration	122 days	13 days	p=.003
Recover Ambulation	62% (10/16)	19% (3/16)	p=.012
Continence	155 days	17 days	p=.016
Narcotics (MSO4)	.4 mg	4-8 mg	p=.002
Survival Time	126 days	100 days	p=.033

Surgery + cEBRT, Germany

- •101 patients/106 metastases
- Surgical Approach:
 - Posterolateral: 79%
 - ≻Anterior: 12%
 - ➤Combined Anterior/Posterior: 9%
 - ➢ Partial (48%) or Complete Resection (43%): 91%
- •Adjuvant Treatment (cEBRT): 100%

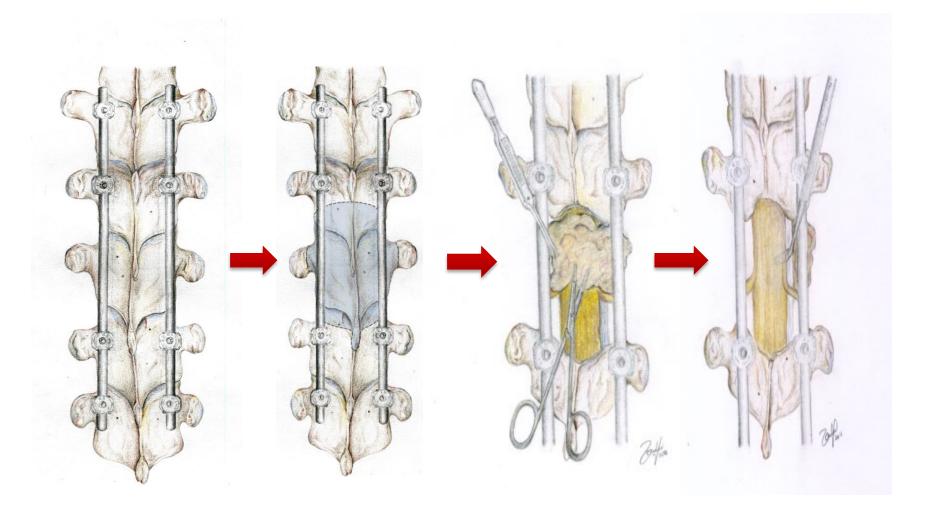
•Local Control: 40% @ 6 months 30% @ 1 year 4% @ 4 years

•Significant Predictors of Recurrence:

> Ambulation, Tumor Histology, Completeness of Resection

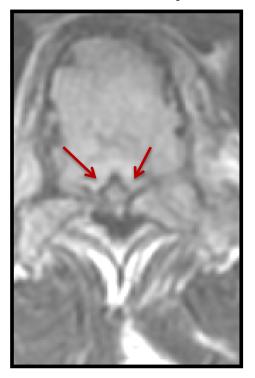
AO Recommendation

- Clinicians might surgically debulk asymptomatic high grade epidural disease before SBRT to optimize local control
- High-grade spinal cord compression due to solid tumor malignancy undergo:

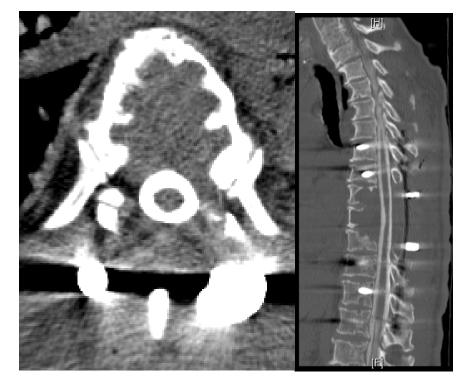

Surgical decompression and Stabilization followed by RT

(What Kind of Surgery and What Kind of Radiation?)

Separation Surgery


The James

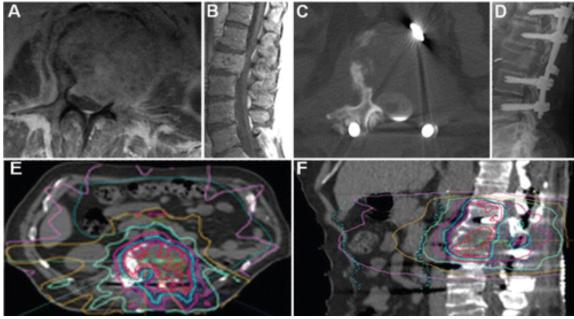
THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER


Separation Surgery

MRI: Pre-decompression

Separation Surgery

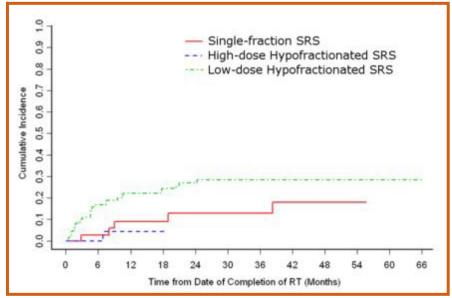
CT Myelogram: Post-decompression



Separation Surgery + SRS

- 186 patients
- 2002-2011
- 7.6 months median f/u
- Tumor Presentation:
 - ESCC 2 or 3: 73%
 - RT-resistant: 77%
 - Failed prior RT: 49%
- SRS strategies:
 - Single Fraction SRS: 24Gy
 - High-Dose Hypofractionated: 8-10Gy x 3
 - Low-Dose Hypofractionated: 6Gy x 5

The James


WEXNER MEDICAL CENTER

THE OHIO STATE UNIVERSITY

Separation Surgery + SRS

- 1-year overall recurrence
 - Total: 16.4%
 - Single-fraction SRS: 9.0%
 - High-dose hypofractionated: 4.1%*
 - Low-dose hypofractionated: 22.6%
- No neurologic complications
- No association:
 - Radioresistant tumor histologies
 - Previous radiation
 - Epidural extension

84% Local Control

The James

WEXNER MEDICAL CENTER

THE OHIO STATE UNIVERSITY

Long Term Survivors

- Retrospective
- 88 patients; survived >2 years after surgery for symptomatic spinal metastases
- Durable tumor control can be achieved in long-term cancer survivors surgically treated for symptomatic spinal metastases with limited complications

- Return to OR: 23%
- Post-Treatment Progression: 10 cases
- 2 asymptomatic broken screws
- 8 cases of asymptomatic progressive kyphotic deformity

Return to OR	
Total cohort	20 (23)
Open surgery	
Early hardware failure	2 (2)
Delayed hardware failure	7 (8)
Tumor recurrence	5 (6)
Wound dehiscence	3 (3)
Epidural hematoma	1 (1)
MIS	
Delayed hardware failure	2 (2)

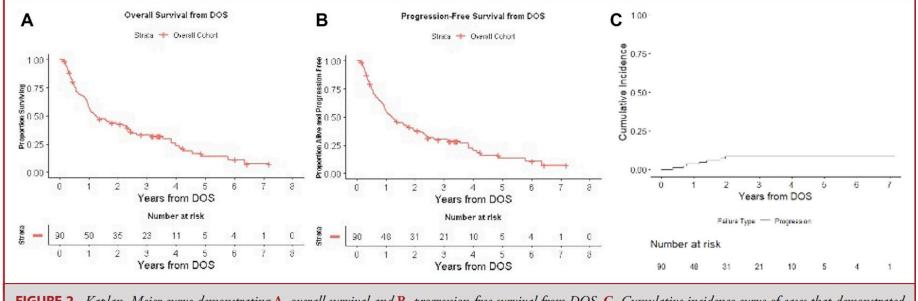
Hybrid Therapy: Patient Reported Outcomes

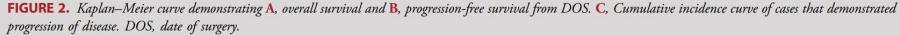
- PRO's Hybrid Therapy
 - 111 patients
 - Median f/u: 16.7 mos.
- BPI:
 - Worst pain
 - Pain right now
 - Combined BPI:
 - Pain severity
 - Pain interference with daily life
 - Overall pain experience
- MDASI (MD Anderson Symptom Inventory)
 - Spine pain severity
 - General activity
 - Increased nausea

Table 3 Brief Pain Inventory (BPI) and MD Anderson Symptom Inventory (MDASI) individual item results at baseline and 3-month follow-up (primary end point)

		Preoperative Survey			3-Month Postoperative Survey					
Survey	Individual Item	Mean Score	SD	Ν	%	Mean Score	SD	Ν	%	Wilcoxon matched pairs test <i>P</i> value
BPI ⇒	Worst pain	6.3	3.1	111	100	4.5	2.8	60	54	< .0001
	Least pain	2.7	2.5	111	100	1.6	1.8	61	55	.0072
	Average pain	4.3	2.6	111	100	3.1	2.1	61	55	.004
-	Right now pain	3.8	2.9	111	100	2.4	2.2	62	56	< .0001
	General activity	5.4	3.8	110	99	3.7	3.2	62	56	.01
	Mood	4.1	3.6	109	98	3.2	2.8	60	54	.02
	Walking ability	4.7	3.6	109	98	3.5	2.9	61	55	.08
	Normal work	5.7	4	109	98	4.2	3.3	62	56	.04
	Relations	2.8	3.4	109	98	2.6	2.9	62	56	.95
	Sleep	4.1	3.6	110	99	3	2.8	60	54	.2
	Enjoyment of life	5.2	3.7	108	97	4	3.2	61	55	.01
	Relief	63.3%	27.7%	100	90	52.7%	32.7%	52	47	.06
MDASI	Pain	6.6	3.2	107	96	5	3.1	63	57	.06
	Fatigue	5.1	3.2	108	97	5.2	3.4	61	55	.56
-	Nausea	1.2	2.4	106	95	2.2	2.7	62	56	.0001
	Sleep	4.3	3.7	108	97	3.7	3.2	60	54	.68
	Distress	4.3	3.7	105	95	3.2	3.1	61	55	.06
	Shortness of breath	1.7	2.6	108	97	2.1	2.8	62	56	.23
	Memory	1.5	2.3	108	97	2	2.6	62	56	.62
	Appetite	2.5	3	108	97	2.9	3	61	55	.02
	Drowsy	3.1	3.1	108	97	3.2	3	61	55	.13
	Dry mouth	3.1	3.4	108	97	3	3	61	55	.56
	Sadness	3.2	3.5	105	95	2.8	3	61	55	.69
	Vomiting	0.6	1.8	108	97	1	2	60	54	.007
	Numbness	3	3.4	107	96	2.9	3.2	62	56	.49
	Spine pain	4.6	3.8	104	94	2.6	3	60	54	.0006
	Limb weakness	3.2	3.6	105	95	3.2	3.2	60	55	.16
	Bowel/Bladder control	0.5	1.6	106	95	0.6	1.6	59	53	.84
	Bowel pattern	2.4	3.3	105	95	2.3	2.9	59	53	.23
	Sexual function	2.1	3.6	98	88	2.8	3.9	57	51	.81
-	General activity	5.9	3.7	104	94	4	3.2	61	55	.0002
	Mood	4.2	3.4	103	93	3.3	2.8	61	55	.03
	Work	5.8	4	102	92	4.5	3.6	59	53	.04
	Relations	2.8	3.3	102	92	2.8	3	60	55	.97
	Walking	5.1	3.6	95	86	4	3.8	55	50	.18
	Enjoyment of life	5.2	3.7	104	94	4.1	3.5	61	55	.04

Hybrid Therapy: Renal Cell Carcinoma

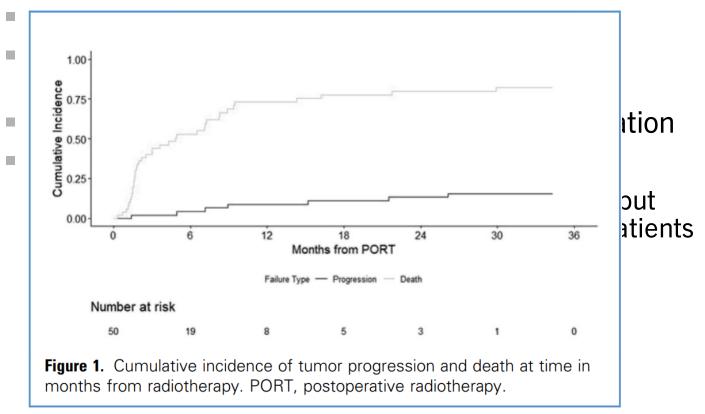

92% Local Control


The James

WEXNER MEDICAL CENTER

THE OHIO STATE UNIVERSITY

- 90 Patients (median age: 62 years)
 - Median length of stay: 5 days; 87% discharged home
 - Major complication rate: 12%
 - Mean follow-up of 37 months for survivors: only 7 (7.8%)

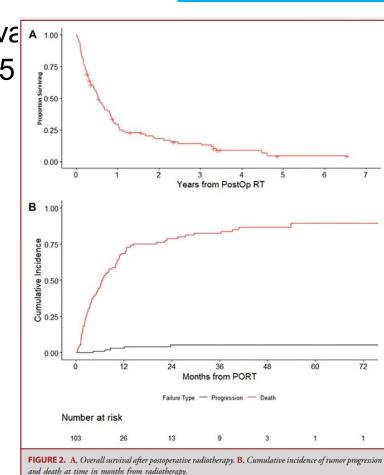


Hybrid Therapy: Colorectal Carcinoma

87% Local Control @ 2 years

50 patients (median age: 55 years)

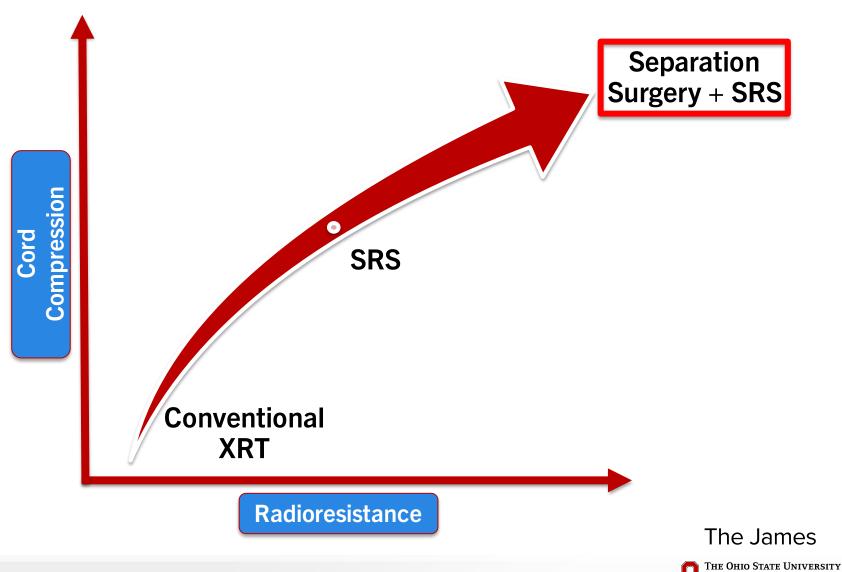
The James



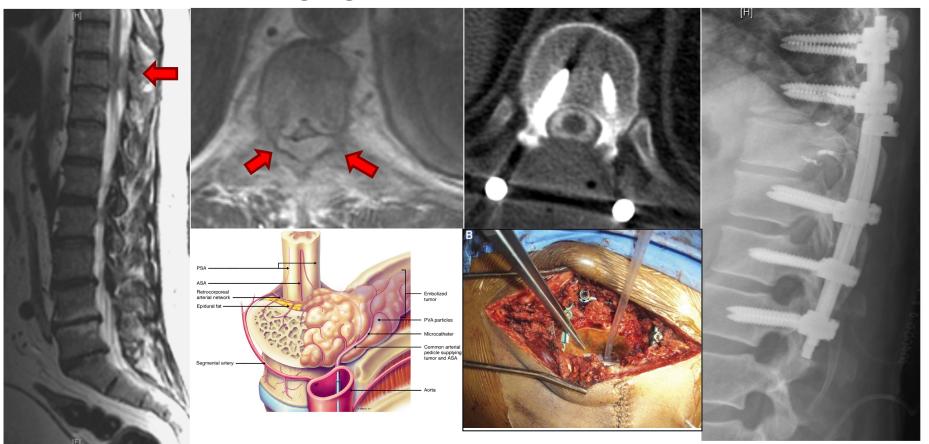
Hybrid Therapy: Non-Small Cell Lung Cancer

103 patients

Progression: 5



95% Local Control @ 2 years



WEXNER MEDICAL CENTER

Evolution of Separation Surgery

Long Segment Pedicle Screw Fixation

Separation Surgery: Long Constructs

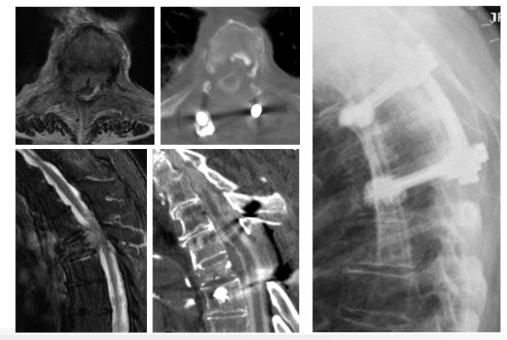
- 318 patients
- Major histologies
 - NSCLC, RCC, Prostate Sarcoma
- Failure Rate: 2.8% (9/318)
 - Rod or Screw Break
 - Screw pull out
 - Symptomatic VB fracture
- Risk Factors
 - Junctional Spine (CT or TL)
 - Post-menopausal females

Separation Surgery: Short Constructs

- 44 patients
- Median f/u 11 months
- Levels: Thoracic (43%), Thoracolumbar (11%), Lumbar (45%)
- Major histologies
 - NSCLC, Prostate, Colorectal, Breast
- Failure Rate
 - Requiring Surgery: 2.2% (1/44)

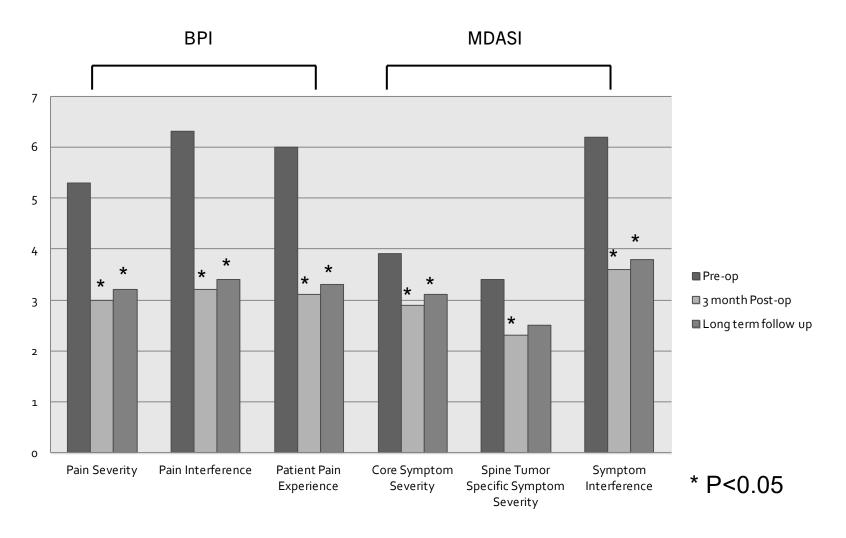
T3 bilateral pedicle screw fracture

- Asymptomatic: 6.8%
 - Haloing (4.4%)
 - Progressive Fracture
- PMMA Complications: None



Separation Surgery: MIS Applications

- Percutaneous Pedicle Screw Fixation with Cement Augmentation
- Tubular Access
 - Decompression
 - Facetectomy
 - Transpedicular decompression
- Mini-open Decompression



Separation Surgery: MIS Applications

MIS Applications

The James

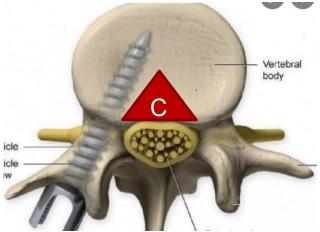
WEXNER MEDICAL CENTER

THE OHIO STATE UNIVERSITY

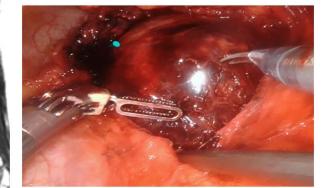
Barzilai et al. World Neurosurg 2018

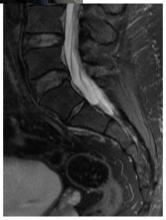
Neurologic	Low-grade ESCC No Myelopathy High-grade ESCC +/- Myelopathy
Oncologic	Radiosensitive
	Radioresistant/ Previously Irradiated
anical	Stable
Mechanical	Unstable
Systemic	Able to tolerate surgery
	Unable to tolerate surgery

Neurologic	Low-grade ESCC No Myelopathy High-grade ESCC +/- Myelopathy
Oncologic	Radiosensitive
	Radioresistant/ Previously Irradiated
anical	Stable
Mechanical	Unstable
Systemic	Able to tolerate surgery
	Unable to tolerate surgery


Future Directions

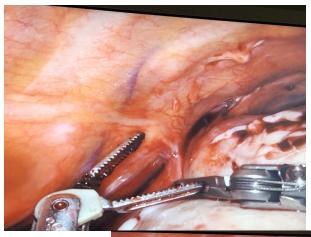
Carbon Fiber/PEEK Instrumentation

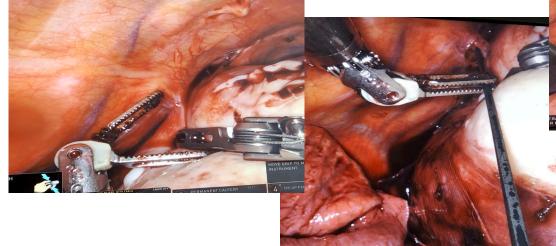


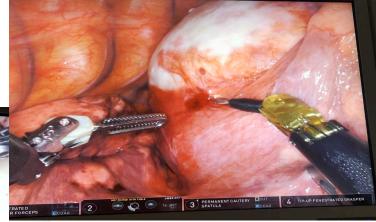

THE OHIO STATE UNIVERSITY

MIS Applications: DaVinci Robot

Presacra







MIS: Da Vinci Robot

The James

Era of Targetable Mutations

SPINE Volume 41, Number 20S, pp S218–S223 © 2016 Wolters Kluwer Health, Inc. All rights reserved

Metastatic Spine Tumors

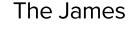
Molecular Markers and Targeted Therapeutics in Metastatic Tumors of the Spine

Changing the Treatment Paradigms

C. Rory Goodwin, MD, PhD,* Nancy Abu-Bonsrah, BS,* Laurence D. Rhines, MD,[†] Jorrit-Jan Verlaan, MD, PhD,[‡] Mark H. Bilsky, MD,[§] Ilya Laufer, MD,[§] Stefano Boriani, MD,[¶] Daniel M. Sciubba. MD.* and Chetan Bettegowda. MD. PhD*

The Targeted Therapies Era Beyond the Surgical Point of View: What Spine Surgeons Should Know Before Approaching Spinal Metastases

Fabio Cofano, MD¹, Matteo Monticelli, MD¹, Marco Ajello, MD¹, Francesco Zenga, MD¹, Nicola Marengo, MD¹, Giuseppe Di Perna, MD¹, Roberto Altieri, MD¹, Paola Cassoni, MD², Luca Bertero, MD², Antonio Melcarne, MD¹, Fulvio Tartara, MD³, Alessandro Ducati, MD¹, and Diego Garbossa, MD, PhD¹


The James

	a cancer				1				Table 2. Breast car	ncer		-
Table I. Lung cancer.									Molecular Feature		Drug(s)	
Molecular Feature		Target of Therapies	Drug(s)						Estrogen Aromatase	Estrogen receptor Aromatase	Tamoxifen Letrozole, anastrozo	ole,
EGFR		EGFR TKI	Gefitinib, Er Afatinib, (lotinib, Osimertinib					Ovarian estrogens	Luteinizing hormone- releasing	exemestane Leuprolide, Gosereli	lin
HER 2/HER 4		HER 2/HER 4+ Afatinib								hormone analogs		
T790M secondary mutation in EGFR ALK-EML4 fusion oncogene VEGF-A PD1 CheckMate 17		Table 5. Renal Cell cancer.					Table 7. Hepatocellular carcinoma. D and					
		Molecular feature target of therapies drug(s)					Molecular Target of Feature Therapies Drug(s)					ostat, ise
		VEGF	TKI, monoclonal antibodies anti VEGF			VEGFR-2 MAPK		VEGFR-2 cells MAPK	 Regorafenib, Nivolumab. Caboz Ramucirumab Sorafenib, Lenvatinib 		Cabozantinib,	s Ilimus,
		CheckMate 214	Ab-antiCheckMat 214	mab, Ipilimumab, tinib		pathway					umab	
CheckMate 057 PD-LI		Abbreviations: TKI, tyrosine kinase inhibitors; VEGF, vascular endothelial growth factor.				al	Abbreviations: MAPK, mitogen-activated protein kinase; VEGFR, vascular endothelial growth factor receptor.					b,
Table 3. Prostate cance							Table 8. Colorectal cancer.					
Molecular		Table 6. Thyroid cancer.				Molecular Feature Target o		et of Thomasian	of Thempion Drug(c)			
Feature	Target o	Molecular	Target of			_	VEGF pathway		F + cells	Bevacizuma		В,
Androgen pathways	LHRH li	Feature MAPK	Therapies	Drug(s)		_	EGFR pathway		EGFR + cells		Panitumumab	
Androgen	Enzyme	pathway	MAPK Sorafenib, Levantinib, V way Cabozantinib				Abbreviations: EGFR, epithelial growth factor receptor; VEGF, vascular endothelial growth factor.					
pathways		n receptor (A	Ketoconazole; otor (AR) cyproterone acetate, bicalutamide, flutamide, nilutamide, enzalutamide.		CTLA-4 PD-1	СТ			numab olumab, embrolizumab, acarbazine			
proliferation nuclea		r activator of Denosumab ar factor kappa-B (RANKL) , PD1, PD1 ligands Ipilimumab, nivolumab,			Fumor cell lysis and immune responses after antigen release and granulocyte-	lmr	nune cells	la	mogen herparepvec ^r -VEC)			
inhibitors		/PD-L2	pembroliz atezolizum	umab,	macrophage colony- stimulating factor (GM-CSF).					The	James	
Cofano et al. Cancer C	Control 2019										IO STATE UNIVERS	SITY

Can targeted therapy data be used for prognostication in metastatic spine disease?

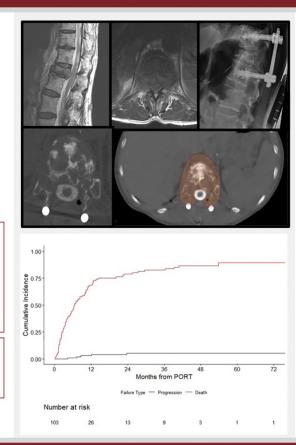
- NSCLC: A systematic review including 27 studies found that median survival of patients with non-small cell lung cancer being treated with epidermal growth factor receptor (EGFR) inhibitors were improved
- Melanoma: Retrospective small cohort of 18 patients found that failing prior immunotherapy treatment was associated with significantly shorter survival following spine surgery

Batista et al. J Clin Neurosci 2016 Shankar et al. Spine 2017 The Impact of Targetable Mutations on Clinical Outcomes of Metastatic Epidural Spinal Cord Compression in Patients with Non-Small Cell Lung Cancer treated with Hybrid Therapy (Surgery followed by Stereotactic Body Radiation Therapy)

Study Population

Retrospective study

103 patients with NSCLC spinal metastases presenting with MESCC


Hybrid Therapy (separation surgery followed by SBRT)

Clinical-Genomic Correlations

Treatment	Tumor mutations
EGFR	EGFR Exon 18/19/20/21
VEGF	TP53
Chemotherapeutic	KRAS
agent(S)	ALK
Tyrosine Kinase	HER2
Inhibitor	BRAF
PD-1/PDL1 therapy	PDL1 expression

Outcomes

Overall survival (OS) Progression free survival (PFS) Local tumor control (competing risk setting)

Results

 Hybrid therapy in NSCLC patients presenting with spinal cord compression resulted in 95% local control at 2 years after surgery.

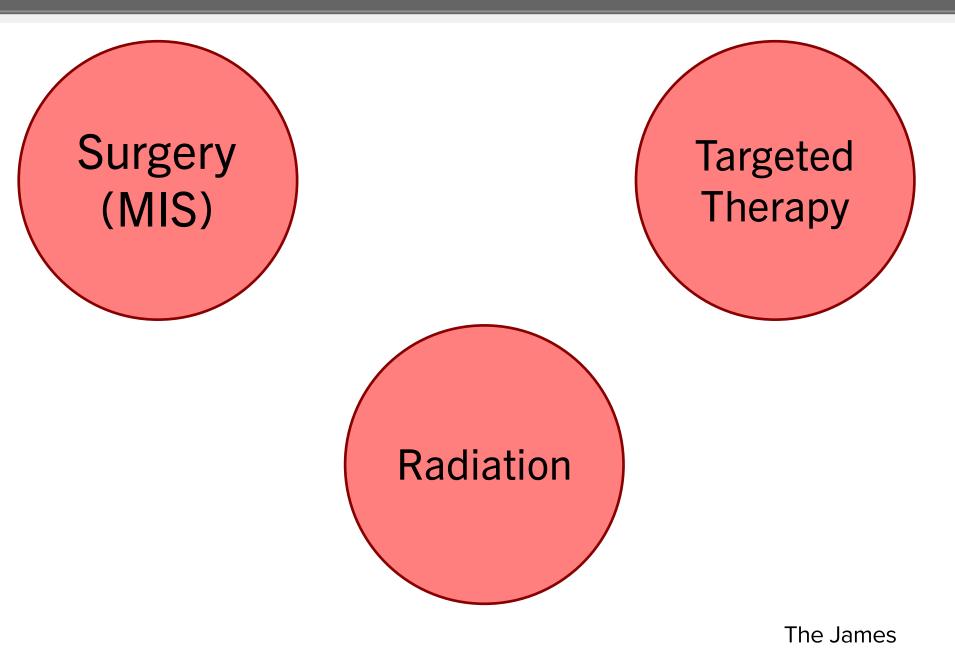
Conclusion

EGFR treatment naïve patients who initiated EGFR targeted therapy after hybrid therapy had significantly longer OS (HR 0.47, 95% CI 0.23-0.95, P = .04) even after adjusting for smoking status.

EGFR-targeted therapy initiated prior to hybrid therapy did not confer a survival benefit.

Patients harboring the EGFR exon 21 mutation portended a 2-fold increase in PFS from date of surgery (HR:0.48, 95%CI:0.24-0.97, P = .04).

 Systemic targetable therapy will likely need to be considered in future prognostication models.



Published by Wolters Kluwer on behalf of the Congress of Neurological Surgeons

89

Chakravarthy et al

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Surgery (MIS)

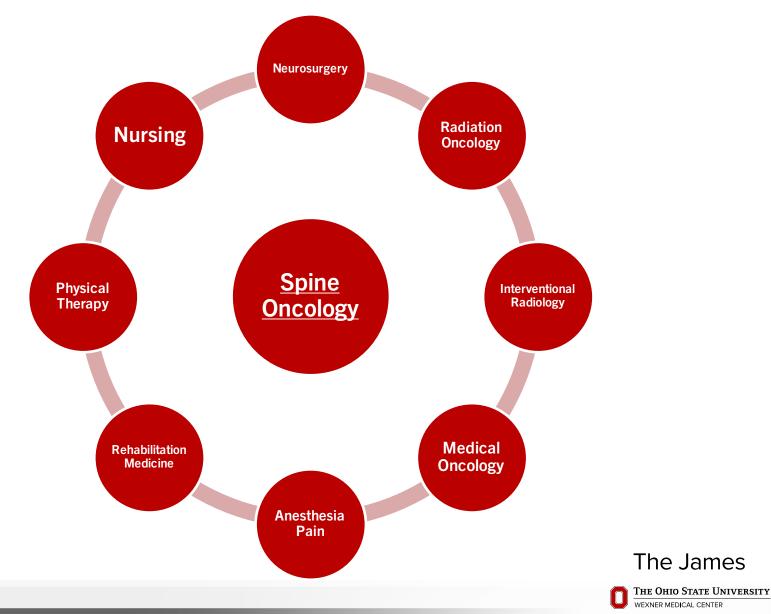
Targeted Therapy

Radiation

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Final Thoughts

The James


The Ohio State University

WEXNER MEDICAL CENTER

Creating a Cancer-free World. One Person, One Discovery at a Time.

The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Multidisciplinary Spine Tumor Program

Spine oncology surgeons

Vikram Chakravarthy, MD

614-685-1965 Fax: 614-688-6203 Vikram.Chakravarthy@osumc.edu

Radiation oncology

Sasha Beyer, MD, PhD 614-293-8415 Fax: 614-688-6203 Sasha.Beyer@osumc.edu

J. Brad Elder, MD 614-685-1965 Fax: 614-688-6203 Brad.Elder@osumc.edu

Dukagjin Blakaj, MD, PhD 614-293-8415 Fax: 614-688-6203 Dukagjin.Blakaj@osumc.edu

Thomas Scharschmidt, MD 614-293-4420 Fax: 614-688-6203 Thomas.Scharschmidt@osumc.edu

Joshua Palmer, MD 614-293-8415 Fax: 614-688-6203 Joshua.Palmer@osumc.edu

David Xu, MD 614-293-2225 Fax: 614-688-6203 David.Xu@osumc.edu

Raju Raval, MD, DPhil 614-293-8415 Fax: 614-688-6203 Raju.Raval@osumc.edu

Zlatina Wilburn, APRN-CNP 614-293-6992 Fax: 614-688-6203 Zlatina.Wilburn@osumc.edu

Evan Thomas, MD, PhD 614-293-8415 Fax: 614-688-6203 Evan.Thomas@osumc.edu

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Thank You

314.650.7748 VIKRAM.CHAKRAVARTHY@OSUMC.EDU

The James

